323 research outputs found

    Editorial

    Get PDF
    The articles in this issue provide only a glimpse of the research in chemical ecology conducted in Switzerland. Many other researchers work in this discipline, spanning everything from plant-pollinator interactions to human parasite biology. The chemical ecology community is, in its very core, open to all fields of research and seeks to connect itself with scientists at all levels of scientific inquiry, from single molecules to ecosystems. I hope that this special issue will inspire you and help you identify new opportunities for interdisciplinary collaborations

    The Inverted Phantom Giant

    Get PDF
    In his famous children’s book, “Jim Button and Luke the Engine Driver”, Michael Ende describes a curious character: A phantom giant. Clothed in rags and with a long beard, the phantom giant appears enormous from far away, but shrinks to normal size as one gets closer. Most people avoid the poor creature, but the ones that dare approach it encounter a gentle, lonely being called Mr. Tur Tur. Chemical ecology is just the opposite of Mr. Tur Tur: A phantom dwarf. Or, in other words, an inverted phantom giant. From a distance, chemical ecology appears like a slightly odd, marginal section of biology and chemistry. But, as the interested scholar approaches, it starts growing and very quickly reaches gigantic dimensions, because all life is explained by chemistry, and all biological chemistry is guided by ecological principles. Herein lies the difficulty with chemical ecology: As it is not perceived well by biologists and chemists, few approach it to understand its significance, and the ones that do find themselves in front of a giant that defies their attempts to define and contain it. This is where the Journal of Chemical Ecology comes in: It invites us to take a closer look at an underestimated discipline and supports us to explore it and deal with its multidimensionality through the promotion of knowledge and methods. These services are unique and make the journal stand out of the crowd of scientific journals. Writing children’s books has become difficult in the era of information technology. And, so has the job of the Journal of Chemical Ecology. Young scientists gather information through accessible, dynamic websites and social platforms. They want articles that are available through a single mouse click, anywhere, anytime. They prefer advanced interactive hypertext protocols over clumsy pdf files. They care about transparency, non-profit and open access just as much as about traditional journal properties. In my view, reaching “the kids” is the major challenge of the Journal over the next years. Promoting an inverted phantom giant in the 21st century requires a combination of high-quality information and boosted visibility. In Michael Ende’s book, Jim and Luke follow exactly this strategy with Mr. Tur Tur: They become friends and offer him a job as a living lighthouse to protect their small island. They combine a quality relationship with high visibility, et voilà, the story ends well! I am looking forward to seeing if the Journal of Chemical Ecology will follow a similar path to reach the next generation of biologists and chemists. If yes, there is a good chance that in 40 years from now, somebody will write a laudation and refer to another famous book by Michael Ende: “The Neverending Story”

    Volatile uptake, transport, perception, and signaling shape a plant's nose.

    Get PDF
    Herbivore-induced plant volatiles regulate defenses in undamaged neighboring plants. Understanding the mechanisms by which plant volatiles are taken up, perceived, and translated into canonical defense signaling pathways is an important frontier of knowledge. Volatiles can enter plants through stomata and the cuticle. They are likely perceived by membrane-associated receptors as well as intracellular receptors. The latter likely involves metabolization and transport across cell membranes by volatile transporters. Translation of volatiles into defense priming and induction typically involves mitogen-activated protein kinases (MAPKs), WRKY transcription factors, and jasmonates. We propose that the broad range of molecular processes involved in volatile signaling will likely result in substantial spatiotemporal and ontogenetic variation in plant responsiveness to volatiles, with important consequences for plant-environment interactions

    The Inverted Phantom Giant

    Get PDF

    A tritrophic signal that attracts parasitoids to host-damaged plants withstands disruption by non-host herbivores

    Get PDF
    Background Volatiles emitted by herbivore-infested plants are highly attractive to parasitoids and therefore have been proposed to be part of an indirect plant defense strategy. However, this proposed function of the plant-provided signals remains controversial, and it is unclear how specific and reliable the signals are under natural conditions with simultaneous feeding by multiple herbivores. Phloem feeders in particular are assumed to interfere with plant defense responses. Therefore, we investigated how attack by the piercing-sucking cicadellid Euscelidius variegatus influences signaling by maize plants in response to the chewing herbivore Spodoptera littoralis. Results The parasitoid Cotesia marginiventris strongly preferred volatiles of plants infested with its host S. littoralis. Overall, the volatile emissions induced by S. littoralis and E. variegatus were similar, but higher levels of certain wound-released compounds may have allowed the wasps to specifically recognize plants infested by hosts. Expression levels of defense marker genes and further behavioral bioassays with the parasitoid showed that neither the physiological defense responses nor the attractiveness of S. littoralis infested plants were altered by simultaneous E. variegatus attack. Conclusions Our findings imply that plant defense responses to herbivory can be more robust than generally assumed and that ensuing volatiles convey specific information about the type of herbivore that is attacking a plant, even in complex situations with multiple herbivores. Hence, the results of this study support the notion that herbivore-induced plant volatiles may be part of a plant's indirect defense stratagem

    The Inverted Phantom Giant

    Full text link

    Influence of Artificial Infestation with Western Corn Rootworm Eggs on Maize Morphology

    Get PDF
    A field experiment was carried out in Bečej (Serbia) during 2014 with Serbian maize cultivar NS-640. In experimental field, 96 plants were selected, marked, and arranged in 48 pairs. In each pair, one plant was artificially infested in root zone with 4 mL of Diabrotica v. sp. virgifera eggs 0.125% agar suspension (D plants). The maximum measured height on D (infested) and C (control) plants was 295 cm and 320 cm, respectively. The maximum measured diameter on D plants was 27.93 mm and on C plants was 32.13 mm respectively. The maximum recorded number of leaves was 15 on both categories. Statistical analysis shows that differences between plant diameters and the number of leaves between D and C plants are significant

    Plant chemistry and food web health.

    Get PDF
    Plants are systemically relevant to our planet not only by constituting a major part of its biomass, but also because they produce a vast diversity of bioactive phytochemicals. These compounds often modulate interactions between plants and the environment, and can have substantial effects on plant consumers and their health. By taking a food web perspective, we highlight the role of bioactive phytochemicals in linking soils, plants, animals and humans and discuss their contributions to systems health. The analysis of connections among food web components revealed an underexplored potential of phytochemicals to optimize food web health and productivity

    Magnetic excitations and amplitude fluctuations in insulating cuprates

    Full text link
    We present results from light scattering experiments on three insulating antiferromagnetic cuprates, YBa2_2Cu3_3O6.05_{6.05}, Bi2_2Sr2_2YCu2_2O8+ÎŽ_{8+\delta}, and La2_2CuO4_4 as a function of polarization and excitation energy {using samples of the latest generation. From the raw data we derive symmetry-resolved spectra.} The spectral shape in B1gB_{1g} symmetry is found to be nearly universal and independent of the excitation energy. The spectra agree quantitatively with predictions by field theory [\onlinecite{Weidinger:2015}] facilitating the precise extraction of the Heisenberg coupling JJ. {In addition, the asymmetric line shape on the high-energy side is found to be related to amplitude fluctuations of the magnetization. In La2_2CuO4_4 alone minor contributions from resonance effects may be identified.} The spectra in the other symmetries are not universal. The variations may be traced back to weak resonance effects and extrinsic contributions. For all three compounds we find support for the existence of chiral excitations appearing as a continuum in A2gA_{2g} symmetry having an onset slightly below 3J3J. In La2_2CuO4_4 an additional isolated excitation appears on top of the A2gA_{2g} continuum.Comment: 8 pages, 7 figure
    • 

    corecore